Photochemical Palladium by Visible Light

Jakub Sura April 16th, 2024

The categories of visible light-induced reactions

Type A: Photosensitization by a photocatalyst

Type B: Cooperative or dual photocatalysis

Type C: Transition metals serving as photocatalysts

Outline

- 1. Initial reports and reactivities
- 2. Alkyl-Heck type reactivity
- 3. Carbonylation chemistry

Not discussed:

Photoredox catalysis and cooperative photocatalysis
Non-bond forming/breaking events
Transition metals other than palladium
Stoichiometric uses of metal

First report of photochemical palladium?

³¹P-NMR Experiments

Without irradiation

With irradiation

The first report of photochemical palladium

Curran, 1998 C-H functionalization Me₂S Me₂S Me₂Si 1,5-HAT AIBN Free Radical of alcohols via 1,5-HAT Reactions Bu₃SnH Gevorgyan envisioned a Gevorgyan, 2016 thermal or [Pd] 1,5-HAT β-Η [Pd] R₂Sị́Ó photochemical [Pd] R₂Si R₂Si R₂Si R₂HSi photochemical or elimination • [Pd] activation of aryl thermal activation iodide in presence of Pd. Gevorgyan, 2016 PPh₂ Pd(OAc)₂ (10 mol%) Ligand (20 mol%) Cs₂CO₃ (2 equiv) P(^tBu)₂ Et₂ PhH, 12 h Yield, % Entry Ligand/Catalyst Conditions Pd(PPh₃)₄ 120 °C 0 1 dppf 120°C 2 0 3 L 120°C 0 Pd(PPh₃)₄ rt, Blue LED 72 4 rt, Blue LED 5 dppf 67 79 6 L rt, Blue LED

The first report of photochemical palladium

Mechanistic investigation

Oxidation `**Si**-O_{\⊕} Si Pd^I Recom-Direct bination Atom Transfer 🖌 H-elimination 1,5-HAT Si-O Pd^{II} Pd^II b**-H** elimination Si Path A Hybrid Aryl Pd-Radical (1,5-HAT) H_bPd^{II}I SET B - Pd^{II}I B∙Hμ (1) L_nPd^{0*} `Pd[∥]I Śi ò Pd^{II}H Path B Concerted Metalation-Deprotonation (CMD) Ĕt₂ H_{b} CMD 1 $H_{\rm b}$ H_aCO₃⁻ 7

J. Am. Chem. Soc. 2016, 138, 6340-6343.

Desaturation of aliphatic amines

Past methods:

All methods had only moderate yields. Brookhart and Doucet reported harsh conditions, while Baran reported low regiocontrol of deprotonation.

Hydrolytic stability of N-Si is lower compared to O-Si.

Desaturation of aliphatic amines

Desaturation of aliphatic alcohols

i-Pr *i*-Pr

T₁

P(^tBu)₂

ŌΗ

PPh₂

P(^tBu)₂

Me

49%

 R^2

73%

8:1 r.r.

89%

i-Pr

77%

7.3:1 r.r.

57%

Me Me بخ Si ا

65%

i-Pr *i*-Pr

T₁

Me Me

∽*i*-Pr Me

⁵—OH ¹⁰

40%

کر Si ۲₂

بر Si

i-Pr

کر Si ا

Nat. Chem. 2012, 4, 629; J. Am. Chem. Soc. 2017, 139, 14857-14860.

Investigating 1,n-HAT

Stereoselectivity for HAT

Kinetic Studies

1,6-HAT > 1,5-HAT > 1,7 HAT

Decarboxylative desaturation of aliphatic RAEs

The bite angle and backbone structure of the bidentate ligand affects the outcome of the reaction significantly.

The cone angle and the steric bulk of the monodentate phosphine ligands control the reactivity

Decarboxylative desaturation of aliphatic RAEs

 $X = Cl^{-} \text{ or } NPhth^{-}$

Alkyl Heck type reactions

Plagued by slow rates of oxidative addition.

Harsh conditions required.

 $\alpha\text{-heteroatom-substituted}$ alkyl electrophiles have not been used.

J. Am. Chem. Soc. 2007, 129, 11340–11341; J. Am. Chem. Soc. 2011, 133, 20146–20148; Angew. Chem. Int. Ed. 2014, 53; 6650; Angew. Chem. Int. Ed. 2017, 56, 14212–14216.

First photochemical [Pd]-catalyzed alkyl-Heck reaction

Radical trapping

Radical clock work

First photochemical [Pd] catalyzed Heck reaction

ChemCatChem, 2010, 2, 1467–1476; Angew. Chem. Int. Ed. 2017, 56, 14212–14216.

Alkyl-Heck with unactivated halides

More alkyl Heck reactivity

Unactivated tertiary halides

Activated tertiary halides

Decarboxylative Heck-type reaction

Decarboxylative Heck-type coupling of aryl carboxylic acids

Decarboxylative Heck-type coupling of aliphatic carboxylic acids

Decarboxylative Heck-type reaction

This radical clock experiment proves the formation of an alkyl radical derived from *N*-hydroxyphthalimide ester after decarboxylation.

Chem. Eur. J. 2018, 24, 4552 –4555.

Investigating alkyl-Heck reaction

1,2-Aminoalkylation

Proposed Mechanism

Reductive Elimination

<u>Typically favored by:</u> - electron poor complexes - strong encumbrance

Arndsten, 2020

Initial studies showed that cooperative photocatalysis was not necessary for this transformation.

Nu

Targeted Synthesis

Visible light in oxidative addition

Corrosive reagents and functional group incompatible.

Radical clock experiments

¹H- and ³¹P-NMR analyses show that $L_nPd(CO)_m$ is the major catalyst resting state.

CO appears to stabilize photoactive species upon reductive elimination.

Conclusion and Outlook

- Conclusion:
 - Visible light-mediated palladium catalysis is an effective strategy for accelerating elementary steps
 - Due to the formation of aryl/allyl/alkyl hybrid Pd radical species, deleterious pathways, such as B-H hydride elimination, can be avoided.
 - This chemistry is uniquely effective at performing reactions where ground state palladium catalysis often fails.
- Outlook:
 - Although computation studies have implicated a aryl/allyl/alkyl hybrid Pd radical species, there is no direct evidence of such an intermediate.
 - Demonstration of *unique* reactivity.
 - Pd(0)/Pd(II) cycles have been investigated the most; what about Pd(II)/Pd(IV)?

Reviews followed

Palladium Catalysis

International Edition: DOI: 10.1002/anie.201813523 German Edition: DOI: 10.1002/ange.201813523

Catalysis with Palladium Complexes Photoexcited by Visible Light

Padon Chuentragool⁺, Daria Kurandina⁺, and Vladimir Gevorgyan*

Photochemistry

How to cite: Angew. Chem. Int. Ed. 2024, 63, e202311972 doi.org/10.1002/anie.202311972

Recent Advances in Visible Light Induced Palladium Catalysis

Sumon Sarkar, Kelvin Pak Shing Cheung, and Vladimir Gevorgyan*

Light-Driven Palladium-Radical Hybrid Species: Mechanistic Aspects and Recent Examples

Questions?