Contra-thermodynamic Alkene Isomerization via Energy transfer(EnT)

Dongchen Ouyang

Denmark Group Meeting 2024-01-30

Geometry as Information

Geometric isomerization of alkene

- Photochemistry Foundation of Energy Transfer
- Contra-thermodynamic Alkene Isomerization
- Perspective
- Summary

Jablonski Diagram

Jablonski Diagram

Alkene isomerization via photochemistry

Jablonski Diagram

Alkene isomerization via photochemistry

Common organic molecule UV light Side reaction Safety hazard Low ISC

Reaction Coordinate

Triplet-triplet *EnT*(Energy transfer)

Steal energy from other excited molecule

Photosensitizers bridge the gap between the high energy level of common organic molecule and the lower energy of the visible light

Triplet-triplet *EnT*(Energy transfer)

How to select a photosensitizer

- ✓ The photocatalyst should have a higher triplet energy than the chosen substrate, but lower than the product
- ✓ The photocatalyst should have high intersystem crossing efficiency (S1 to T1)
- ✓ The photocatalyst should also possess a high extinction coefficient
- ✓ It should not participate in side reactions with any substrate in its excited or ground state: hydrogen atom transfer, competing biradical reactions, or redox process

Energy scale of Photosensitizer

- ✓ The photocatalyst distributed in a very broad spectrum, from 30kcal/mol to about 75 kcal/mol
- ✓ Transition metal complex and phenyl ketone are very common as photosensitizer. Heavy atom effect and El Sayed rule allows these molecules have efficient ISC(S₁-T₁)
- ✓ By changing the substituent on the aromatic ring, the triplet energy can be rationally tuned.
- ✓ Some of the photocatalysts will be discussed later

- Photochemistry Foundation of Energy Transfer
- Contra-thermodynamic Alkene Isomerization
- Perspective
- Summary

Reignition of Interest

Cinnamyl amine isomerization via energy transfer

Weaver(2014)

- Hammond published a very detailed mechanistic study on this type of reaction in 1960s. However, the conditions containing the use of stoichiometric amount of photocatalyst and mercury lamp was not practical for synthesis.
- Weaver is the not first person taking advantage of energy transfer to realize Contra-thermodynamic alkene isomerization. But they are one of the earliest labs to pioneer the rediscovery and optimize it for synthetic use.

Reignition of Interest

Cinnamyl amine isomerization via energy transfer

Weaver(2014)

Stern-Volmer Experiment

- Installation of methyl leads to higher Z/E ratio by steric effect
- Stern-Volmer experiment showed large discrepencies of rate of energy transfer between Z and E isomers.

Possible mechanisms

- Because of the peculiarity of the cinnamyl amine, two possible reaction mechanisms has been proposed.
- The reductive quenching mechanism can be excluded by enantioenriched substrate

Isomerization of Cinnamonitriles

Isomerization of Cinnamonitriles

Quantitative relationship

- Taft parameters is used to evaluate the size of substituent at β position
- Larger the β-substituent, more twist the Z isomer of molecule is and higher the ratio Z/E is

Isomerization of Cinnamonitriles

- Considering steric hindrance in a relatively flexible system can be misleading
- A series of bicyclic systems were selected to minimize the conformational freedom
- Lager ring size force the cyano group closer to H, inducing higher A_{1.3} strain and higher ratio

Summary of styrenyl-based substrate

Non-styrenyl: Leveraging the $n \rightarrow p$ Interaction

Styrenyl

- Styrenyl based compound has low triplet energy level
- Deconjugation effect rely on A_{1,3} strain
- Limited application

Beta-boryl

- Extend the chromophore, and decrease the triplet energy level of substrate
- C-B would be twisted by 90°, driven by the n_o-p interaction
- Versatile handle for traceless, stereospecific, coupling

Non-styrenyl: Leveraging the $n \rightarrow p$ Interaction

*Evidence for the n*_o-*p interaction*

- X-ray structure: 5-membe-ring of BPin is nearly perpendicular to alkene
- ¹¹B NMR: 17.19 ppm for E-8, indicating stabilizing dative $(n_0 \rightarrow p)$ interaction

Z-29: indirect evidence, absence of conjugation between B and double systems because of steric hindrance

Non-styrenyl: Leveraging the $n \rightarrow p$ Interaction

Non-styrenyl: Leveraging the n- π^* Interaction

Di-ester

73%, 94:6

Ester-amide

Di-amide

96%, 95:5

- Deconjugation driven by $n-\pi^*$ interaction
- n-π* plays vital structural roles in complex biomolecule, such as collagens.

Non-styrenyl: Leveraging the n- π^* Interaction

- Photochemistry Foundation of Energy Transfer
- Contra-thermodynamic Alkene Isomerization
- Perspective
- Summary

Other secondary interactions

On top of allylic strain and dative interaction between non-bonding orbital of O and empty orbital, many other secondary interactions are potential to induce the deconjugation of the Z-isomers, including H-bonding, electrostatic effect and so on. By leveraging various type of interactions, a greater variety of alkene can be isomerized by energy transfer.

Cascade transformation

Generally, the photocatalyst is orthogonal to many other downstream transformation, such as crosscoupling. Binding isomerization with stereospecific transformation, stereodivergent catalysis could be achieved

Development of new photocatalyst

Finer-tuning the energy level of T_1 of photocatalyst can help to have higher chance to find the optimized conditions of contra-thermodynamic isomerization

- Photochemistry Foundation of Energy Transfer
- Contra-thermodynamic Alkene Isomerization
- Perspective
- Summary

Summary

- Contra-thermodynamic isomerization via energy transfer
 - Atom economical, efficient, and green
 - Energy transfer provide a milder way to excite the common organic compound to T₁ compared to direct excitation
 - Alkenes on T₁ are able to decay to either E or Z isomers
 - Deconjugation effect is the key reason for the accumulation of Z isomers
- Styrenyl based alkene isomerization
 - Styrenyl based compound has low triplet energy level
 - Deconjugation effect rely on A1,3 strain
- Non-styrenyl based alkene isomerization
 - Boryl unsaturated ester and amide: Leveraging the $n \rightarrow p$ Interaction
 - 1,4-dicarbonyl coumpound: leveraging n- π^* Interaction

Source

Review

- Tomáš Neveselý, Max Wienhold, John J. Molloy, and Ryan Gilmour Chemical Reviews 2022 122 (2), 2650-2694
- J. J. Molloy, T. Morack and R. Gilmour Angew. Chem. Int. Ed.2019, 58, 13654-13664.
- Dutta, S.; Erchinger, J. E.; Strieth-Kalthoff, F.; Kleinmans, R.; Glorius, F., Energy transfer photocatalysis: exciting modes of reactivity. Chemical Society Reviews 2024.

Website

- <u>https://chemfd.github.io/Photochemistry_2/index.html</u>
- <u>https://www.youtube.com/watch?v=rHbxqduwc_E</u>

Questions?