

Catalytic Enantioselective Ugi and Passerini Multicomponent Reactions

Matthew Albritton

Group Meeting

May 16, 2023

Outline

了 The Passerini 3-Component Reaction

- Discovered in 1921 by Mario Passerini at the University of Florence
- Student of Ugo Schiff

• Discovered in 1959 by Ivar Karl Ugi at the Ludwig Maximilian University of Munich

The Ugi 3-Component Reaction

Brønsted or Lewis acid-catalyzed

Synthetic utility

General Scope

Ι

Other Variants

Outline

C Early Attempts: Passerini Reaction

Kusebauch, U.; Beck, B.; Messer, K.; Herdtweck, E.; Dömling, A. Org. Lett. 2003, 5, 4021–4024. Andreana, P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231–4233.

Removing the carboxylic acid eliminates several issues...

Denmark, S.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825–7827. Denmark, S.; Fan, Y. J. Org. Chem. 2005, 70, 9667–9676.

Denmark, S.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825–7827. Denmark, S.; Fan, Y. J. Org. Chem. 2005, 70, 9667–9676.

S. X. Wang, M. X. Wang, D. X. Wang, J. Zhu, Org. Lett. 2007, 9, 3615–3618 Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Angew. Chem., Int. Ed. 2007, 47, 388.

T. Yue, M.-X. Wang, D.-X. Wang, G. Masson, J. Zhu, Angew. Chem. Int. Ed. 2009, 48, 6717 – 672 Zeng, X.; Ye, K.; Lu, M.; Chua, P. J.; Tan, B.; Zhong, G. Org. Lett. 2010, 12, 2414

J. Zhang, S.-X. Lin, D.-J. Cheng, X.-Y. Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 14039 – 14042

5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6

J. Zhang, S.-X. Lin, D.-J. Cheng, X.-Y. Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 14039 – 14042

Zhang Y, Ao YF, Huang ZT, Wang DX, Wang MX, Zhu J. Angew Chem Int Ed, 2016, 55: 5282–5285

Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Science, 2018, 361: eaas8707

Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Science, 2018, 361: eaas8707

Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Science, 2018, 361: eaas8707

Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Science, 2018, 361: eaas8707

Yu, 2022

- Both Ugi and Ugi-azide reactions are ~1st order in imine, carboxylic acid, and catalyst
- Ugi-azide is 0 order in azide

Intramolecular Passerini-type Reactions

Asymmetric Passerini and Intramolecular Ugi-4CR

Asymmetric Ugi-4CR

Asymmetric Ugi-4CR and Ugi-3CR

Questions?