

Catellani Reaction: Mechanistic Investigations and Structurally Modified Norbornene Co-Catalysts

Nick Wade Denmark Group Meeting April 25th, 2023

Presentation Overview

Initial investigations, stoichiometric studies and first report In-Depth look the proposed mechanism

Reaction limitations solved by Structurally Modified Norbornene Co-Catalysts (smNBEs)

Professor Marta Catellani: Biography

Professor Marta Catellani, 2022

- PhD from University of Parma in 1971
 - Post-Doc under Jack Halpern at the University of Chicago
- Returned to University of Parma as a research faculty member in 1974
 - As of 2019, Professor Catellani was appointed Chair of the Chemistry department

Catellani, 1982:

Catellani, 1985:

Stoichiometric Studies and Early Reports

Stoichiometric Studies and Early Reports

>90% selectivity for 1,3-dialkylation over mono-alkylation

Presentation Overview

Initial investigations, stoichiometric studies and first report In-Depth look the proposed mechanism

Reaction limitations solved by Structurally Modified Norbornene Co-Catalysts (smNBEs)

Mechanism: Why Norbornene?

Bicyclic geometry precludes β -Hydride elimination

Norbornene as an *ortho* directing group and an *ipso* protecting group

Migratory Insertion is fast but reversible

Two plausible mechanisms:

Electrophilic Aromatic Substitution (EAS):

Concerted Metalation-Deprotonation (CMD):

Early Mechanistic Evidence:

Electronic effects of the *para*-R group significantly impacted rates

1:1 Ratio of H/D products formed

Reinvestigation:

Lautens' Proposal:

Mechanism: Aryl Norbornene Palladacycle (ANP)

Productive Pathway: ANP Oxidative Addition to Pd^{IV}

Mechanism: Norbornene Extrusion

Catellani, 1995: Disubstitution without an ortho substituent

Proposed Equilibrium:

Catellani, 1999: Mono-substitution with an aliphatic ortho substituent

Mechanism: Termination of Aryl Palladium

Termination of Aryl Palladium: Scope and Examples

Termination of Aryl Palladium: Scope and Examples

Presentation Overview

Initial investigations, stoichiometric studies and first report In-Depth look the proposed mechanism

Reaction limitations solved by Structurally Modified Norbornene Co-Catalysts (smNBEs)

Structurally Modified Norbornenes (smNBEs)

7

Ortho Constraint

Meta Constraint and C-H Activation

L-Type Ligand? Future directions

Slow Oxidative Addition to form Pd^{IV} leads

to deleterious cyclobutane formation:

Yu, 2015: Turning a difficult substrate class into a new preparative method

Solution: Sterically Hindered Norbornenes

Yu, 2015: Bulky ligand and 2-substituted NBE block reductive elimination

Meta Functionalization

Yu, 2015: Meta Alkylation and Arylation

Yu, 2015: Protonolysis termination supported by AcOD study

Disubstitution without an *ortho* substituent:

1-Substitued Norbornenes block difunctionalization:

Solution: 1-Substituted NBEs

Expansion into Olefinic C-H Activation

Expansion into Olefinic C-H Activation

Expansion into Olefinic C-H Activation

Dong, 2019: C-H Activation becomes facile enough to functionalize internal olefins

Application to Sterically Challenging Arene Systems

Dong, 2020: Carry-over to congested aryl rings

Future Directions: 7-Substituted NBEs

Dong, 2021:

Future Directions: 7-Substituted NBEs

Suppress cyclobutane formation

Calculated 5.1 kcal/mol difference in ΔG between 7-bromo and 7-H NBEs.

T

Questions?

Additional Readings

"Structurally Modified Norbornenes: A Key Factor to Modulate Reaction Selectivity in the Palladium/Norbornene Cooperative Catalysis"

J. Am. Chem. Soc. 2020, 142, 42, 17859–17875

"Palladium/Norbornene Cooperative Catalysis"

Chem. Rev. 2019, 119, 12, 7478–7528

"Synthesis in the Key of Catellani: Norbornene-Mediated ortho C–H Functionalization" (book chapter)

Martins, A., Mariampillai, B., Lautens, M. (**2009**). Synthesis in the Key of Catellani: Norbornene-Mediated ortho C–H Functionalization. In: Yu, JQ., Shi, Z. (eds) C-H Activation. Topics in Current Chemistry, vol 292.

"Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C–H Bond Activation" Acc. Chem. Res. **2016**, 49, 7, 1389–1400

Scheme 7. Enantioselective *Meta* C–H Arylation and Alkylation Enabled by a Chiral smNBE

Me Pd(OAc)₂ (10 mol%) smNBE* (20 or 50 mol%) Boc AgOAc, (R)-BNDHP Me. Me Boc or (PhO)₂PO₂H Me⁺ CHCl₃, 100 °C, N₂ Me F₃C ĊO₂Me 27 36-83% yield 42-98% ee ЮH ĊO₂Me (15 mol%) (R) NBoc NMe CO₂H CO₂Me (R) (S) (S) MeO₂C 'n Me НÓ N17*, 40% N18*, 11% N9*, 58% N16*, 34% N15*, 3% -30% ee 76% ee 0% ee 10% ee . , Me Me. Me Me Me Me Boc Boc Boc `N Me m-Tol Ts ĊO₂Me MeO₂Ć Мe Me 28, 72% **29**, 44% **30**, 70% 92% ee 40% ee 84% ee

a. diarylmethylamine substrates

Scheme 2. Unselective Aryl–Alkyl (1, *blue*) and Aryl–Aryl (2, *black*) and Coupling by Catalytic Reaction of a 4-Substituted Bromobenzene Derivative and Norbornene

the same reaction, however, the outcome has been quite different. A mixture of two products is obtained, which derive from aryl attack on the norbornyl or the aryl sites of the metallacycle followed by ring closure. In the presence of a para substituent, two positional isomers of hexahydromethanotriphenylene are formed. For example, 4-bromofluorobenzene gives a mixture of 45 and 15% of the two products (Scheme 2, X = F). Compound **1** comes from initial $C(sp^2)-C(sp^3)$ bond formation while compound **2** results from an initial $C(sp^2)-C(sp^2)$ coupling.¹²

Scheme 17. Activation Barrier of NBE or Acrylate Directed C–H Metalation

