

Lewis Base-Boryl Radical Enabled Reactions

Blake Ocampo February 21, 2023

Classic Uses of Boron as a Lewis Acid

Allylation

$$\begin{array}{c|c}
 & O \\
 & R \\
 & H
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & Me \\
 & HR
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & R \\
 & Me
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & R \\
 & Me
\end{array}$$

Reduction

cis Hydroboration

$$\begin{array}{c} \text{A. [Borane]} \\ \text{H} \end{array} \begin{array}{c} \text{A. [Borane]} \\ \text{2. H}_2\text{O}_2, \text{NaOH} \end{array} \begin{array}{c} \text{H} \\ \text{H} \end{array}$$

Suzuki Cross-Coupling

Why Care about Boryl Radicals?

Cross-Electrophile Coupling

$$\begin{array}{c} \bullet \\ \bullet \\ Ar \end{array} + \begin{array}{c} \bullet \\ \bullet \\ R \end{array} + \begin{array}{c} \bullet \\ \bullet \\ R \end{array} + \begin{array}{c} \bullet \\ \bullet \\ R \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ R \end{array}$$

"Inverse" Hydroboration

Radical Borylation of Arenes

Selective Dehalogenation of C-F bonds

Outline

- I. Initial Discovery of Stable Boryl-Radicals, Structural Features, and Early Reaction Rationalization
- II. NHC-Borane complexes and Extension into Modern Applications
- III. Non-NHC Borane Reactivities and other Modern Advances

Initial Amine and Phosphine Boryl Radical Investigation

Roberts Studies 3 bond, 7 electron Boryl Radicals

$$tBuO \cdot + \overline{B}H_{4} \xrightarrow{UV \text{ light}} tBuOH + \overline{B}H_{3}$$

$$tBuO \cdot + R_{3}Y - \overline{B}H_{3} \xrightarrow{UV \text{ light}} tBuOH + R_{3}Y - \overline{B}H_{2}$$

$$Y = N,P$$

$$R = Et, Ph$$

EPR Result Suggested:

Rationalizing "Ideal" Radical Geometry With Carbon Radicals

- 1. If $\chi_X = \chi_C$, energy minimized when bonding orbitals have the greatest energy (B(sp^3))
- 2. If $\chi_X < \chi_C$, energy minimized with more s character to the bonding orbitals (B(sp²))
- 3. If $\chi_X > \chi_C$, energy minimized with more s character to the odd electron orbital (B(sp³))

Linus Pauling

H''''

Filled B(SOMO) with Filled N(π), Reduced interaction when pyramidal

Some Key MO Interactions:

Filled B(SOMO) with lower energy $CN(\pi^*)$ Better interaction when planar

J. Chem. Soc., Chem. Commun., 1983, 1224-1226

J. Chem. Phys. **1969**, 51, 2767

Reactivity of Amine and Phosphine Boryl Radicals

Halogen Atom Abstraction

$$Et_{3}N - BHR$$

$$R = Me, tBu, thexyl$$

$$X = Br,Cl$$

$$X = ABC + BHR + ABC + ABC + BHR + BHR + ABC + BHR + BHR$$

- Occurs at 173 K readily with substitution on borane
- Higher reactivity, close to 1:1 rate constant between tertiary and primary alkyl halide

- Significantly lower reactivity with Cl, even with borane substitution
- Higher selectivity for tertiary alkyl halides

Nitrile Reactivity and Polarity Reversal

$$H_3N - BH_2$$
 $H_3N - BH_2$
 $C = N$
 $H_3N - BH_2$
 $C = N$
 $H_3N - BH_2$
 $C = N$

Radical addition can occur with unsubstituted boranes

❖ An "electrophilic" radical is converted to "nucleophilic" radical

Addition of Alkyl Radicals into α,β-Unsaturated Esters

$$R^{1}-X + OR^{2} \xrightarrow{Bu_{3}P-BH_{2}Ph, Ph} O tBu$$

$$Chlorobenzene$$

$$R^{1}$$

$$R^{1}$$

- J. Chem. Soc., Chem. Commun., 1983, 1224-1226
- J. Chem. Soc., Perkin Trans. 1988, 2, 1183-1193
- J. Chem. Soc., Perkin Trans. **1988**, 2, 1195-1200

Chem. Soc. Rev., **1999**, 28, 25–35

Why did Boryl Radicals Receive So Little Attention?

1. Ligated and non-ligated boranes had much higher BDEs than Sn and Si for radical hydrogen donors

$$H_2B$$
 H_3N-BH_2
 H_3N-BH_2

2. Calculations of structures with lower BDEs involved transitory compounds and reaction incompatibility

3. Most work focused on boryl radicals from materials and computational perspectives

Expanding Boryl Radical Chemistry through NHCs

Calculation of B-H BDEs

Curran Applies NHC-Borane to Xanthates

Radical Clock Experiment

- NHC-Boranes are competent radical hydrogen atom donors
- Tunable ligands may be able to affect various reactivities

Evidence to Support a Radical Chain Mechanism

Isolated Compounds

SMe
$$\frac{iPr}{s}$$
 $\frac{iPr}{s}$ $\frac{iPr}{s}$

Representative SOMO for NHC

- Planar NHC boryl radical observed by EPR
- > Xanthate Reduction determined to be $3.4 \times 10^4 \, \mathrm{M}^{-1} \mathrm{s}^{-1}$
 - $(TMS)_3Si-H = 3.9 \times 10^5 M^{-1}s^{-1}$
 - ♦ Bu₃Sn-H = $9 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$
 - Et₃Si-H = $6.4 \times 10^2 \text{ M}^{-1}\text{s}^{-1}$

Extend Reactivity to Simple Alkyl and Aryl Halides

Curran Utilizes Thiol Additives

96% yield (X=Br)

86% yield (X=Br)

82% yield (X=I)

Spin Trapping For Hydrogen Transfer

Suggested Propagation Steps

- Thiol accelerates radical HAT
- This is still however a thermodynamically unfavorable process

96% yield (X=Br)

Wang Utilizes Thiol Catalysis for Borylation/Cyclization

Alkene Radical Initiated

92% yield (R=4-CI) 63% yield (R=4-OMe) 29% yield (R = 4-Br)

64% yield

46% yield

0% yield

Alkyne Radical Initiated

55% yield

O_∞ ∠OEt

EtO₂C

81% yield

0% yield

Borylation/Cyclization Mechanism

Radical Clock Experiments

Proposed Mechanism

α-borylation of unsaturated esters

Comparing α vs. β borylation Oestrich β -borylation

C to O-boron isomerization in α -borylation

- > O-Boron enolates occur due to 1,3-boron shift and are thermodynamically driven
- Existing methodology still relies on multistep synthesis rather than direct conversion

Wang Utilizes a Boryl Radical to promote a C-bound Boron

Defining a Mechanism for Selective α -Borylation

Limitations of the Method

Competitive α vs. β borylation 53% yield (95:5 dr) 22% yield 26% yield 41% yield **Competitive Cyclization** 42% yield 29% yield

DFT Investigation

 \triangleright a and β -borylation are differentiated through reversibility of β -addition/elimination

A Hypothesis about Moving from 1,3 to 1,2 borylation

Xie and Zhu form a Mechanistic Hypothesis

Path A

SET reduction of imine with a reductive Ir^{II} could be followed by radical-radical C-B cross-coupling

Path B

NHC-boryl radical addition occurs then SET reduction of the nitrogen-centered radical

Developing a Method for "Inverse Hydroboration"

Varying Thiol Reactivity

- BnSH suppresses reduction of the imine
 Capable of rapid HAA
- Cyclohexanethiol promotes reactivity
 Still shows significant reduction

Reaction Conditions

Mechanistic studies were unfortunately unable to differentiate **Path A** vs. **Path B**, but low quantum yield of 35% did suggest **Path B** is less likely.

Towards Non-Initiator Type NHC-Borane Reactivity

Yang's Photoredox System

M + N BH3 diMe-Imd-BH3

Wang's Photoredox System

50% yield 40% yield 40% yield 40% yield

Individual Mechanism Investigations

Yang's Mechanism Investigation

Radical Trap Experiment

Deuterium Experiments

1,4 Addition Experiment

Wang's Mechanism Investigation

NHC-Borane shows no oxidative quenching for Wang, UNLIKE Yang

Radical Clock Experiment

standard conditions

Ph
$$CO_2Et$$
 NC CO_2Et CO

Arene plays a role as an oxidant in this cycle

Two Separate Reaction Manifolds

Yang's Ir(II)/Ir(III) Proposed Mechanism

Wang's Ir(III)/Ir(IV) Proposed Mechanism

Rational Design Can Access Different Manifolds of Reactivity!

syn disfavored

anti favored

Boryl-Radical Mediated Defluorination

Spin-Center Shifts in Chemistry

Key Finding by Curran and Walton

The Ideal Reaction Manifold for Step-Wise Defluorination

X = O, NRZ = Br, Cl, OR

Boryl-Radical Mediated Defluorination Methodology

Mechanistic Investigations for Defluorination

proposed intermediate

Radical Clock Experiment

Proposed Intermediate

Bond Dissociation Energies for SCS

Proposed Pathway

Extending Dehalogenation Methods to Chlorine

Developing Method with Reaction Screening

Quenching Rate Constants

Boryl Radical	k _Q (M ⁻¹ s ⁻¹) at rt	k _Q (M ⁻¹ s ⁻¹) at rt
DMAP-BH ₂	3.9 × 10 ⁸	3.7 × 10 ⁷
+ - H ₂ NHC-BH ₂	2.5 × 10 ⁸	4.2 × 10 ⁷
+ - DMAP-BH ₂ CN*	2.9 × 10 ⁸	1.3 × 10 ⁷
+ - NHC-BH ₂ CN	8.4 × 10 ⁶	2.1 × 10 ⁶

- > Chemoselectivity for chlorine is high
 - Unable to see quenching of radical for monochlorine

Dechlorinative Coupling from Trichloromethyl Group

Dechlorinative Coupling from Dichloromethyl Group

- NHC-BH₂CN is the only borane that goes to completion for dichloromethyl group
 - ❖ Note: This "NHC" is referring to diMe-Imd-BH3

Boryl-Radical Mediated Dechlorinative Coupling

Changes in the Mechanism from C-F to C-Cl

Possible Reaction Pathways

Halogen Atom Transfer

$$\Delta G^{\ddagger} = 7.0 \ kcal/mol$$

$$\Delta G^{\ddagger} = 12.3 \ kcal/mol$$

$$\Delta G^{\ddagger} = 14.6 \, kcal/mol$$

Carbonyl Attack

$$\Delta G^{\ddagger} = 9.7 \ kcal/mol$$

$$\Delta G^{\ddagger} = 16.6 \, kcal/mol$$

$$\Delta G^{\ddagger} = 13.7 \ kcal/mol$$

Possible Reaction Pathways

R ¹	k _Q (M ⁻¹ s ⁻¹) at 72 °C	SOMO/LUMO gap (eV)
-CN	1.21 × 10 ⁶	3.41
-Ph	0.97×10^6	4.37
-OMe	< 10 ⁵	4.55

- ➤ This suggests that the boryl radical prefers to attack the carbonyl oxygen atom, which would induce a SCS to eliminate HCl
- ➤ The mechanism is then proposed as halogen atom transfer for tri- and dichloromethyl substituents, but an SCS for mono-chloro species

Radical Borylation Methodology with B₂Pin₂

Zhu Designs Catalyst for Homolytic Cleavage of B₂Pin₂

Jiao Applies This To Radical Borylation of Arenes

Confirming the Mechanism

Radical Studies

Plausible Reaction Mechanism

Competition Experiments

- > Suggests ate complex is formed with B₂pin₂
- > Two operative species:
 - Persistent Boryl Radical for Coupling
 - Electron Donor for SET

Designing a non-ligated boryl-radical system

Waldvogel reports 2 bond, 5 e boron generation

Transforming an Tertiary Alcohol to a Radical

$$R^1$$
 OH R^2 R^3 R^2 R^3

- > High BDE (96 kcal/mol)
- Can be accomplished by Ti(III), cationic phosphine radicals, or functional group interconversion

Hypothesis

Capture of the unstable neutral boryl radical species by oxygen could allow for activation of the C-O bond for homolysis

Boryl Radical Activation of Benzylic C-OH

Probing Reactive Species

Stern-Volmer Analysis

Radical Trapping

Crossover Experiment

63% yield

Isotopically Labeled Oxygen

85% yield

Final Mechanism Proposal

About Quinuclidine's Role

Plausible Reaction Mechanism

Functions to Suppress Proton Transfer to Benzylic Anion

Summary of Reactivities

Pros

- Very tunable reactivity based on the ligand
- Many precursors to boryl radicals are easily accessible and benchtop stable
- Can access "inverse" reactivity compared to standard boron chemistry
- Can be used to activate normally inert bonds

Cons

- Reaction development requires either extensive trial/error or computational investigation
- Often require H-atom donors with temperature or photocatalysis
- Other radical chain precursors still often perform better for these transformations
- Most NHC-based methods still utilize the the N-methyl NHC

Future Directions

Direct C-H Radical Borylation

$$Ar-X$$

$$X = CI, Br, I$$

$$Ar-B$$

$$OR$$

$$Ar-B$$

$$OR$$

This will almost certainly involve photoredox applications/new boron ligand development

Additional Carbon-Heteroatom Activation Development

Substrate scope compatibility is still limited

Additional Investigation into how the Lewis Base Alters the Chemical Reactivity

The field is rich in different complexes, but reaction development is difficult

Reviews of Interest

Guobing Yan, Dayun Huang, Xiangmei Wu

Recent Advances in C-B Bond Formation through a Free Radical Pathway

Adv. Synth. Catal. 2018, 360, 1040-1053

Tian-Yu Peng, Feng-Lian Zhang, and Yi-Feng Wang

Lewis Base-Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon-Heteroatom Bonds

Acc. Chem. Res. **2023**, 56, 169–186

Florian W. Friese and Armido Studer

New avenues for C-B bond formation via radical intermediates

Chem. Sci. **2019**, 10, 8503-8518

Emy Andre-Joyaux, Lars Gnagi, Manuel Gnagi-Lux, Camilo Andres Melendez Becerra, Valentin Soulard, Nicholas D. C. Tappin, and Phillipe Renaud

Boron-Mediated Radical Reactions

Organoboron Compounds, 2022, 1-102