Matt Bock

Denmark Group Meeting

29 November 2022

Daphniphyllum Alkaloids:

Outline

Synthesis Covered:

What is a Dapniphyllum Alkaloid

Select daphniphyllum alkaloids

Biological Activity

Table 1. Cytotoxic Activities of Daphniphyllum Alkaloids

	cytotoxic activity				
alkaloid		IC ₅₀		against	ref
daphnicyclidin A	13.8 µM		P-388 cells		52
daphnicyclidins A-H	0.8, 0.1, 3.0, 1.7,	0.8, 0.1, 3.0, 1.7, 0.4, 4.3, 4.2, and 0.5 µg/mL murine		rine lymphoma L1210	
daphnicyclidins A-H	60 26 72 16	60 26 72 16 52 76 210 and 00 un/mT human anidarmaj			17
daphnicyclidins J and K	Table 2. Alkaloids with Other Bioactivities			a L1210	19
daphnicyclidins J and K	alkaloid	activity	rof	id carcinoma KB cells	19
daphnicyclidins M and N	arkatold	activity	26		52
daphnicyclidins M and N	calyciphylline K	enhances mRNA expression of NGF	30		52
11.	daphtenidine C	insecticidal against Plutella xylostella	03		
daphmanidins A and B	daphmanidin C	elevated activity of NGF biosynthesis	20 DAE 64	a L1210	20
	daphniolananine J	inhibits polymerication of tubuling IC	- 24		
daphnezomine B	daphnigiaucin C	$25 \ \mu M$	= 24	a L1210	15
daphnezomine B	daphmacromines A-J	pesticide activity against brine shrimp	65	id carcinoma KB cells	15
daphnezomines F and G	daphmacromine O	pesticide activity against brine shrimp	55	a L1210	16
daphnezomines F and G	daphmanidins A, E,	relaxation activity; ^a 38% and 46% at	66	id carcinoma KB cells	16
daphnezomines L and N	and F	10 ⁻⁵ M for A and E, 35% at 10 ⁻⁵ M f	or F	a L1210	18
daphnezomines P, Q, R, and S	deoxycalyciphylline B	hepatotoxic	59	a L1210	60
	himalenines A-E	inhibitory activity against kinase enzymes 1B, aurora A, and ΙΚΚ-β	PTP 48		
daphniglaucins A and B	logeracemin A	anti-HIV activity; $EC_{s0} = 4.5 \pm 0.1 \ \mu M$	49	a L1210	21
daphniglaucins A and B	longeracemine	stimulates shoot elongation of wheat	39	id carcinoma KB cells	21
daphniglaucin C	pordamacrines A and B	relaxation activity; " 50.0% and 47.1% at 10^{-4} M	67	a L1210	24
daphnilongeridine	^a Relaxation activity against norepinephrine-induced contractions of 549, Bel-7420 cells				
daphnilongeridine	thoracic rat aortic rings with endothelium.				61
		-			
daphangustifoline B	28.64% ± 13.569	% at 10 ⁻⁵ M	HL-60 cells		62
daphangustifoline B	11.80% \pm 17.17% at 10 ⁻⁵ M		MCF-7 cells		62
daphangustifoline B	53.25% \pm 1.68% at 10^{-5} M		A549 cells		62
calyciphyllines A and B	2.1 and 4.2 μ g/mL		murine lymphoma L1210		22
calyciphylline G	9 µg/mL		murine lymphoma L1210		32
macropodumine C	10.3 μM		P-388 cells		52

Initial Biosynthetic Studies

Additional ¹⁴C labeling, ³H labelling indicated further evidence of MVA incorporation

- ¹⁴C labelled squalene showed incorporation into the above species
- Similar behavior observed with daphnilactone B

Biosynthestic Proposal: Suzuki and Yamamura

Biosynthestic Proposal: Suzuki and Yamamura

to several 2,8-dioxabicyclo[3.2.1]octanes from geraniol (ref. 3). However, with regard to the more complex nitrogen-containing portions of the *Daphniphyllum* alkaloids, there has been essentially no actual biosynthetic experimental work, and the general schemes that have been advanced (ref 1,2) are not mechanistically satisfying.

Tetrahedron Lett. **1973**, *14*, 799-82.; Tetrahedron Lett. **1973**, *14*, 2129-2132. Pure Appl. Chem. **1989**, *61*, 289-292.

(±)-methyl homosecodaphniphyllate

2nd generation synthesis of the first synthesized daphniphyllum alkaloid

Heathcock's Hypothesis

What about the other scaffolds?

Heathcock's Hypothesis

Synthesis of proto-daphniphylline

Synthesis of proto-daphniphylline

OH

An Accident?

A solution to the foregoing dilemma was provided not by design, but through a remarkable accident. At one point in our utilization of the cyclization protocol for the synthesis of various *Daphniphyllum* alkaloids, one of my graduate student coworkers carried out the normal protocol that we had developed, using dialdehyde 24 as the substrate. To our amazement, the product of this reaction was not the normal one, compound 25, but its dihydro derivative compound 32 instead. Remarkably, compound 32 was produced in very good yield (about 75%).

Careful examination of all of the reagents, solvents, and reaction conditions soon revealed the cause for this unexpected result: a mislabeled reagent. Shortly before the strange reaction was carried out, our supply of ammonia had been exhausted and my coworker had obtained a new lecture bottle from a friend in another research group. The new lecture bottle, although clearly labeled "Ammonia," was found by mass spectral analysis to contain only methylamine. The

Glycine performs the same cyclization in 38% yield

Heathcock's Hypothesis

The Missing Link: From secodaphnane to daphnane

Angew. Chem. Int. Ed. 1992, 31, 665-681.; J. Org. Chem. 1992, 57, 2585-2594.; J. Org. Chem. 1995, 60, 1131–1142

calyciphylline A-Type Skeletons

Calyciphylline A-type Skeleton **Distinguishing Features**

- C₂₂ nor-daphnniphyllum alkaloid
- Fused hexacyclic **B** ring
- Variety of oxidation patterns on the **B-F** ring, including oxidation on nitrogen

Premier Members of the Class

Daphenylline

Himalensine A First synthesis: Li, 2013 First synthesis: Dixon, 2017

Daphniphyllum longeracemosa (daphenylline) Isolation yield: 40mg from 60kg. Structure determined from NMR **Biological Activity unknown**

Daphniphyllum longeracemosa (himalensine) Isolation yield: 1.6mg from 12.3g Structure determined from NMR **Kinase** inhibitor

Putatitve Biosynthesis

Nat. Prod. Rep., 2009, 26, 936–962.; daphneylline isolation: Org. Lett. 2009, 11, 2357–2359.; himalensine isolation: Org. Lett. 2016, 18, 1202-1205.

AcC

daphenylline, Li (2013)

daphenylline, Li (2013)

daphenylline, Li (2013)

Nat. Chem. 2013, 5, 679-684.

daphenylline, Li (2018)

daphenylline, Li (2018)

daphenylline, Li (2018)

daphenylline, Zhai (2018)

Retrosynthesis

daphenylline, Lu (2022)

daphenylline, Lu (2022)

daphenylline and himalensine A, Qiu (2021)

daphenylline and himalensine A, Qiu (2021)

Angew. Chem. Int. Ed. 2021, 60, 9439-9443.

himalensine A, Xu (2019)

daphnezomine A-Type

Distinguishing Features

- Aza-adamantane core. First natural product to be identified with such a feature
- Some members contain a hemiaminal

Daphniphyllum humile From 4 kg of leaves: Daphnezomine A: 400 mg; not cytotoxic Daphnezomine B: 45 mg: cytotoxicity was observed in lymphoma and epidermoid carcinoma KB cells (0.46 μg/mL, 8.5 μg/mL)

Putatitve Biosynthesis

Nat. Prod. Rep., 2009, 26, 936–962.; daphnezomine A and B isolation: J. Org. Chem. 1999, 64, 7208-7212.

No observation of oxa-Michael With OH, or carboxy derivative

J. Am. Chem. Soc. 2019, 141, 11713-11720

daphnezomines A and B, Li (2020)

Retrosynthesis

daphnezomines A and B, Li (2020)

Conclusions and Future Directions

Key Takeaways:

- The biosynthesis of the daphniphyllum alkaloids has been somewhat established, predominantly through Heathcock's synthetic studies
- The calyciphylline A family has received significant attention from the significant community
 - Strategies vary: cycloaddition, electrocyclization, oxidative dearomatization, metal-catalyzed cyclizations.
- More complicated scaffolds, such as the daphnezomines, are finally being explored, despite being known for quite some time.

Future Directions:

- Beyond Suzuki, Hirata, and Heathcock's studies, very little on the biosynthesis, particularly the purported "enzyme-catalyzed" steps, have been explored.
- Given the biosynthetic proposal, a unified total synthesis of many daphniphyllum alkaloids families would be interesting (see Li's chemrxiv: 10.26434/chemrxiv-2022j8fzb)
- Synthesis of other families beyond the calyciphylline A series

Further Reading

Recent Progress in the Chemistry of Daphniphyllum Alkaloidst

Amit Kumar Chattopadhyay and Stephen Hanessian*

View Author Information ~

NPR

Cite this: Chem. Rev. 2017, 117, 5, 4104-4146
Publication Date: February 16, 2017 V
https://doi.org/10.1021/acs.chemrev.6b00412
Copyright © 2017 American Chemical Society
RIGHTS & PERMISSIONS Subscribed

Article Views	Altmetric	Citations	
6599	-	105	
LEARN AI	BOUT THESE ME	TRICS	

Good overview of synthesis And synthetic studies Chem. Rev. **2017**, 117, 4104–4146

View Article Online View Journal | View Issue For an in-depth look at strategies towards Calyciphylline A-type skeletons *Nat. Prod. Rep.* **2014**, *31*, 550-562

Cite this: Nat. Prod. Rep., 2014, 31, 550

Baldip Kang, Pavol Jakubec and Darren J. Dixon*

Strategies towards the synthesis of calyciphylline

RESEARCH ARTICLE | CHEMISTRY |

REVIEW

Nature knows best: An amazing reaction cascade is uncovered by design and discovery

Clayton H. Heathcock Authors Info & Affiliations

December 10, 1996 93 (25) 14323-14327 https://doi.org/10.1073/pnas.93.25.14323

REVIEW

City a lar

Heathcock's accounts of their biosynthetic work *PNAS* **1996**, *93*, 14323-14327.

www.rsc.org/npr | Natural Product Reports

The Daphniphyllum alkaloids

Jun'ichi Kobayashi* and Takaaki Kubota

Received 1st March 2009 First published as an Advance Article on the web 8th May 2009 DOI: 10.1039/b813006j Isolation and biosynthetic logic Nat. Prod. Rep., **2009**, 26, 936–962.;