Carbon-Carbon Bond Formation Driven by the Water-Gas Shift Reaction

Zachery Matesich 28 March 2017

Projects

Allyl electrophile scope

Asymmetric allylation

Alternative approaches

Water-Gas Shift Reaction

3

Traditionally used in industry to purify H₂ via removal of CO
 Organic synthesis use as H₂ surrogate

Why use the WGSR

Significant number of organic reactions require pre-reduced starting materials and are therefore, overall a reductive process

This generates a waste stream and involves poor atom economy

Carbonyl Allylation – Pre-formed/catalytic allylation reagents

5

Brown (1983)

Leighton (2004)

Paterson (2003)

Brown, H. C.; et al. J. Am. Chem. Soc. **1983**, 105 (7), 2092-2093. Leighton, J. L. et al Org. Lett. **2004**, 6, 4375-4377. Paterson, I. et al. Angew. Chem. Int. Ed. **2003**, 42 (9), 1032-1035.

Carbonyl Allylation – Transfer Hydrogenation

Krische (2008)

6

Starting material can be aldehyde or alcohol

Krische, M. J., et al. J. Am. Chem. Soc. 2008, 130 (20), 6340-6341.

Carbonyl Allylation – Transfer Hydrogenation

Use of alpha-branched alcohols

Ruthenium-catalyzed Allylation – Et₃N as Stoichiometric Reductant

- □ Amine is the hydride source
- CO thought to only serve to stabilize the ruthenium metal
- Further shown to be chemoselective for aldehydes over ketones

Et₃N as Stoichiometric Reductant – Mechanism

□ Use of Et₃N for catalyst turnover

Ruthenium-catalyzed Allylation – CO as Stoichiometric Reductant

Denmark (2008)

- Improvements:
 - CO pressure lowered to 30 psi
 - Aldehyde limiting reagent
 - Et₃N only 0.1 equiv
 - Temperature lowered to 70 °C

CO as Stoichiometric Reductant – π-allyl formation

- Same formation of products from constitutional isomers
- \square Evidence for formation of same π -allyl complex

CO as Stoichiometric Reductant – Ruthenium Catalyst Survey

12

	`H +	OAc	Ruthenium catalyst (3 mol% Ru), additives		s	OH
		(1.1 equiv)	H ₂ O (1.5 dioxane,	equiv), CO 70 °C, 24 h		
	Entry	Ruthenium Catalyst	Et ₃ N (equiv)	TBACl (equiv)	Product Yield (%)	
	1	$RuCl_3 \bullet nH_2O$	0.03	0	0	
	2	$RuCl_3 \bullet nH_2O$	0.10	0	100	
	3	$RuCl_3 \bullet nH_2O$	1.0	0	68	
	4	allylRu(CO) ₃ Br	0	0	12	
	5	allylRu(CO) ₃ Br	0.1	0	93	
	6	allylRu(CO) ₃ OAc	0	0	43	
	7	allylRu(CO) ₃ OAc	0.1	0	70	
	8	allylRu(CO) ₃ OAc	0	0.03	84	
	9	Ru ₃ (CO) ₁₂	0.1	0	15	
	10	Ru ₃ (CO) ₁₂	0.1	0.03	8	
	11	$\operatorname{Ru}_3(\operatorname{CO})_{12}$	0	0.1	80	

- Amine required for Ru(III) precatalyst
- Use of amine can also increase product yields
- Halide has same effect or improved when using carbonyl

Nguyen, S. T. Postdoctoral Report, University of Illinois - Urbana/Chamapaign, 2008.

CO as Stoichiometric Reductant – Amine Survey

Amine not a hydride donor

13

Use of chiral amines gave no product enantioenrichment

CO as Stoichiometric Reductant – Role of Amine

14

 \Box Amine acts to reduce the higher oxidation ruthenium sources to Ru(CO)_x

CO as Stoichiometric Reductant – Proposed Catalytic Cycle

15

Action of WGSR to turnover catalyst

Research Objectives for Allyl Electrophiles

16

 Determine effect of 2-substitutions on allylic acetates on reaction efficiency and mechanism

 Explore the ability of non-symmetrical allyl electrophiles and reaction conditions that can affect product distribution

 Explore reaction conditions and roles of other reagents in carbonyl allylation reaction

Nucleofuge on 2-Methallyl Electrophile Survey

17

 \square pK_a values near AcOH appear to be most beneficial

Aldehyde Scope for 2-Methylallyl acetate

Moderate yields with ED allylic acetate

18

Oxidative addition would be slower in more electron rich allyl

Formation of Lactone

19

costunolide

- Lactone formed in situ
- \Box Workup with CF₃CO₂H could induce lactone formation
- Motif present in 10% of natural products

vernolepin

eremathin

Aldehyde Scope for t-Butyl 2-(acetoxymethyl) acrylate

Reaction conditions: (A) 1.6 equiv of acetate; (B) 1.2 equiv of acetate; (C) 1.4 equiv of acetate.

Similar yields to ethyl ester without lactone formation

20

Denmark, S. E.; Matesich, Z. D. J. Org. Chem. 2014, 79, 5970-5986.

H₂O Optimization – 2-methylene-3-oxobutyl Acetate

21

 \square Higher equivalents of H₂O and/or time increased aldehyde conversion

Denmark, S. E.; Matesich, Z. D. J. Org. Chem. 2014, 79, 5970-5986.

Aldehyde Scope for 2-methylene-3-oxobutyl acetate

Reaction conditions: (A) 2.0 equiv 2n, 24 h; (B) 2.4 equiv 2n, 48 h.

Good to moderate yields with EW allylic acetate

22

Denmark, S. E.; Matesich, Z. D. J. Org. Chem. 2014, 79, 5970-5986.

H₂O Optimization – 2-Phenylallyl Acetate

23

	0 + ^	Ru ₃ (CO) ₁₂ (3 mol %), TBACI (9 mol %) <u>CO (40 psi), Et₃N (0.1 equiv)</u> <u>I</u>					
	R H AcO (equiv)		H ₂ O (equiv) 75	0.4 M) R	R		
Entry	Product	Time (hours)	Acetate (equiv)	H ₂ O (equiv)	Benzaldehyde Recovery (% by GC)	Acetate Recovery (% by GC)	
1		24	2.4	3.0	17	0	
2	OH II	24	2.4	3.5	19	1	
3		24	2.8	2.0	16	40	
4		24	2.8	2.5	12	11	
5		48	2.8	2.0	17	37	
6		48	2.8	2.5	11	7	
7		24	2.4	3.5	18	0	
8	OH	24	2.8	2.5	22	12	
9		24	2.8	3.5	22	0	
10		48	2.8	3.5	18	0	

 Higher equivalents of H₂O increased aldehyde conversion with higher equivalents of allylic acetate

Aldehyde Scope for 2-Phenylallyl Acetate

24

Reaction conditions: (A) 2.8 equiv of acetate, 2.5 equiv H₂O, 48 hours; (B) 2.4 equiv of acetate, 1.5 equiv H₂O, 24 hours; (C) 2.8 equiv of acetate, 3.5 equiv H₂O, 24 hours.

Yield somewhat lower compared to EW allylic acetates

Aldehyde Scope for 2-(diethoxymethyl)allyl acetate

- Initial experiments showed near total conversion of aldehyde under classic conditions
- Required basic workup to remove acid that hydrolyzed on removal of solvent

Initial Screen – Cinnamyl Acetate

- Use of EtOH gave improved yield over dioxane
- Furthermore, significant linear product observed with dioxane reactions
- □ As ruthenium catalysts gave similar results, move forward with RuCl3
- Later experiments revealed 5 mol % catalyst gave sufficient conversion in 20 h

Acetal Formation – Cinnamyl Acetate

- 27
- □ In case of aliphatic aldehydes, acetal formation became problem with EtOH

- Use of tBuOH worked best for hydrocinnamaldehyde
- \square However, with other aldehydes, increased γ -syn and α products
- Aliphatic aldehydes to use tBuOH, otherwise use EtOH

Aldehyde Scope – Cinnamyl Acetate

- 28
- Scope of aldehydes was next examined

- Yields of around 70-90%
- Heterocycles also required used of tBuOH for good selectivity
 - In case of EtOH, N-Ts pyrrolaldehyde had anti-syn ration closet to 8:1

Initial Screen – Vinyl Oxirane

- Alcohol solvent gave poor yield and selectivity
- Dioxane with Ru(0) catalyst gave great yield and selectivity
- Soluble chloride shown to be a necessity, even with RuCl_x catalysts

Electrophile/Water Loading – Vinyl Oxirane

- Full consumption of vinyl oxirane shows significant unproductive protonolysis
- Increased equivalents was able to further increase yield, still with full consumption
- Aldehyde scope is ongoing

Conclusions

- Successful extension of ruthenium-catalyzed nucleophilic allylation of aldehydes to 2-substituted allylic acetates
- Selective use of solvent and additives can improve selectivity on non-symmetrical allyl electrophiles
- Reaction conditions compatible for diverse substituents on allylic acetate pro-nucleophiles
- Balance of equivalents of allyl electrophile and H₂O resulted in increased product yields

Asymmetric Allylation – Prior Work

32

Initial attempts to render reaction enantioselective were unsuccessful
 Thought to be result of ligand not coordinating to ruthenium

Milicevic, S. D. Postdoctoral Report, University of Illinois - Urbana/Champaign, 2009.

Asymmetric Allylation – Pre-formed Ru-catalysts

Tridentate and/or C-Ru bound complexes give no enantioenrichment
 Use of bidentate oxazoline ligands with different backbones gave a hit

Asymmetric Allylation – Bisoxazoline Ru-catalysts

(ligand = 6 mol % free bisoxazoline)

Variable er values, but close to 30:70

- Additional ligand improved er, up to 22:78, at cost of lower yields
- Highly efficient background causing lower er values

Asymmetric Allylation – Computational Study

Asymmetric Allylation – Computational Study

 Experimental attempt did not result in even same er as phenyl, despite similar energy differences

Asymmetric Allylation – Computer-guided Ligand Design

- Use of different ruthenium source allowed for use of free ligand
- \square Increased π -surface and steric bulk appeared to give high er value
- \Box However, other increased π -surface or steric bulk ligands gave poor er

Asymmetric Allylation – Nitrogen-bridged Ligands

High er in case of 9, but low yield

- □ Similar in the case of $Ru_3(CO)_{12}$ w/ TBACI
- Addition of Et₃N gave poor er in all cases but increased yield
- Gives evidence for competitive binding of amine and ligand

Asymmetric Allylation – Nitrogen-bridged Ligand Competition

0 II + ^	R .OAc	$\langle \gamma \gamma \gamma \gamma \rangle$				
Ph H 1.	5 equiv	CO (psi), H dioxane (0.4	Ph Ligand Pl			
	Entry	Amine (mol %)	CO (psi)	Conversion (% by GC)	e.r	-
	1	N-Me TMP (10)	40	5	20:80	
	2	Et ₃ N (5)	40	5	20:80	
	3	Et ₃ N (6)	40	20	14:85	
	4	Et ₃ N (7)	40	90	41:59	
	5	N/A	40	5	15:85	
	6	N/A	60	20	22:78	
	7	N/A	80	100	39:61	
	8	Et ₃ N (5)	60	20	38:62	
	9	$Et_3N(5)$	80	90	37:62	_

- Increasing amine equivalents decrease er/increase yield
- □ Similar trend for CO pressure with different amine loadings
- Reaffirms competitive binding

39

Ligand-bound ruthenium is less reactive

Conclusions

- Successfully able to design an asymmetric WGS allylation reaction
- The ligated-ruthenium appears to have a slower reaction rate, and highly efficient background lowers er
- Additional ligand or tighter-bound ligand increases er, but at cost of yield
- Competitive binding of ligand and additives observed
- Further enantioselective attempts should focus on a new ligand backbone

Alternative Approach

- Design a more efficient WGS allylation reaction
- Current drawbacks:

41

1) Use of ruthenium – can we use a more abundant metal?

2) Moderately high temperature – can we reduce to RT?

Alternative Approach – Iron DoE Study

Carried out a Design of Experiment (DoE) approach

- No turnover was observed
- Highest yield of product was 9% (by GC) with 10 mol % Fe
- One possibility is due to strong Fe-O bond strength as compared to Fe-COOH bond inhibiting the protonolysis step (93 kcal/mol vs 32 kcal/mol)

Electrochemical requirement

$$CO + H_2O \longrightarrow CO_2 + 2H^+ + 2e^- \qquad E^{\circ}_{ox} = +0.53 \vee V$$

$$M^{2+} + 2e^- \longrightarrow M^0 \qquad E^{\circ}_{red} = x$$

$$M^{2+} + CO + H_2O \longrightarrow M^0 + CO_2 + 2H^+ \qquad \Delta E^{\circ} = (x + 0.53) \vee V$$

If $E^{\circ}_{red} > -0.53 V$, the reaction can be driven by the WGSR

$M^{2+} + 2e^{-} \longrightarrow M^{0}$	Cr	Mn	Fe	Со	Ni	Си	Zn
M^{2+} , co , ll o s	-0.91 - 0.38	-1.19 -0.66	-0.45 0.08	-0.28 0.25	-0.26 0.27	0.34 0.87	-0.76 -0.23
$M^{-} + CO + H_{2}O \longrightarrow$ $M^{0} + CO_{2} + 2H^{+}$	Мо	Тс	Ru	Rh	Pd	Ag	Cd
			0.45 0.98	0.60 1.13	0.95 1.48		-0.40 0.13
	W	Re	Os	Ir	Pt	Au	Hg
					1.18 1.71		0.85 1.38

Alternative Approach – Photochemical WGS Allylation

Ruthenium-based catalysts

 $H_2O + CO \xrightarrow{[RuCl_2(bpy)_2]} H_2 + CO_2$

- □ Light irradiation required to generate H_2 from $[RuClH_2(bpy)_2]^+$
- Iridium-based catalysts

 $H_2O + CO \xrightarrow[Ir(Cp^*)(bpy)CI]CI \\ \xrightarrow{} H_2 + CO_2 \\ \xrightarrow{Buffer (pH=7) \\ 500 \text{ W, RT}} H_2 + CO_2$

- **D** pH of 7 required to balance CO_2 and H_2 formation preferences
- Activity of catalyst diminishes over time, but addition of bpy improves yield

Cole-Hamilton, D. J. et al J. Chem. Soc. Dalton Trans. **1982**, 1885-1893 Ziessel, R. J. Chem. Soc. Chem. Commun. **1988**, 16-17

Alternative Approach – Ir Photochemical WGS Allylation

Initial photochemical attempts with ruthenium catalysts

- Complete conversion to benzyl alcohol using phosphate buffer
- Iridium catalysts seem more suited to aldehyde reduction

Alternative Approach – Combined Ir and Ru Reaction

Dual catalyst system

- Experiment showed that 60 equiv of buffer in dioxane allowed Ir reactivity
- Clear distinction of addition of Ir photocatalyst with Ru-allylation catalyst
- Additional reactions with other Ru-catalysts and bpy additives gave similar results
- □ In all cases, reduction of aldehyde was the dominant reaction

Alternative Approach – Ru Photochemical WGS Allylation

Initial photochemical attempts with ruthenium catalysts

47

□ Significant reactivity in light → revealed to be due to heat from lamp
 □ Formation of benzyl alcohol from aldehyde reduction

Alternative Approach – Ru Photochemical WGS Allylation

Reaction rerun with better cooling in side by side with reaction cell that was opened to test periodically

- Divergence in yield of benzyl alcohols points towards possible buildup of H₂ from normal photochemical WGSR
- Yields of homoallylic alcohol similar in both experiments
- Subsequent reactions adjusting light intensity, solvent, additive gave at best
 1:1 (total yield ~20%) reduction:allylation
- Most often, only increases in reduction were observed

49

Replacement of iron for ruthenium

- Did not result in any turnover
- Issue with electrochemical potential and Fe-O cleavage
- Photochemical reactions
 - Primary reaction was reduction of aldehyde
 - Iridium catalysts highly favored reduction
 - Ruthenium catalysts gave some allylation HOWEVER was usually observed in dark reactions to nearly same extent
 - RT activation of ruthenium shown viable (previous report used >80 °C)

Acknowledgements

Doctoral Committee: Prof. Scott E. Denmark Prof. Martin D. Burke Prof. Jeffery S. Moore Prof. Thomas B. Rauchfuss

Denmark group – past and present Transition metal subgroup

Dr. Andrea Ambrosi Dr. Scott Barraza Dr. Hao Wang Malek Ibrahim

Dr. David Kornfilt

